Software Engineering

Explainability in Cybersecurity Data Science

The Carnegie Mellon University Software Engineering Institute, AI Engineering: A National Initiative. Accessed: 2023-08-29.

A. Alshamrani, S. Myneni, A. Chowdhary, and D. Huang, A survey on advanced persistent threats: Techniques, solutions, challenges, and research opportunities, IEEE Communications Surveys & Tutorials, 21 (2019), pp. 1851–1877.

H. Barmer, R. Dzombak, M. Gaston, J. Palat, F. Redner, C. Smith, and T. Smith, Human-Centered AI. Accessed: 2023-08-29.

D. Bertsimas and J. Dunn, Optimal classification trees, Machine Learning, 106 (2017), pp. 1039–1082.

A. L. Buczak and E. Guven, A survey of data mining and machine learning methods for cyber security intrusion detection, IEEE Communications Surveys & Tutorials, 18 (2015), pp. 1153–1176.

D. Dasgupta, Z. Akhtar, and S. Sen, Machine learning in cybersecurity: a comprehensive survey, The Journal of Defense Modeling and Simulation, 19 (2022), pp. 57–106.

European Parliament and Council of the European Union, Regulation (EU) 2016/679 of the European Parliament and of the Council.

D. Gibert, C. Mateu, and J. Planes, The rise of machine learning for detection and classification of malware: Research developments, trends and challenges, Journal of Network and Computer Applications, 153 (2020), p. 102526.

B. Goodman and S. Flaxman, EU regulations on algorithmic decision-making and a “right to explanation”, in ICML Workshop on Human Interpretability in Machine Learning (WHI 2016), New York, NY., 2016.

Z. Hao, S. Liu, Y. Zhang, C. Ying, Y. Feng, H. Su, and J. Zhu, Physics-informed machine learning: A survey on problems, methods and applications, arXiv preprint, arXiv:2211.08064, (2022).

K. Highnam, K. Arulkumaran, Z. Hanif, and N. R. Jennings, BETH dataset: Real cybersecurity data for anomaly detection research, Training, 763 (2021), p. 8.

G. E. Karniadakis, I. G. Kevrekidis, L. Lu, P. Perdikaris, S. Wang, and L. Yang, Physics-informed machine learning, Nature Reviews Physics, 3 (2021), pp. 422–440.

C. Rudin, Stop explaining black box machine learning models for high stakes decisions and use interpretable models instead, Nature Machine Intelligence, 1 (2019), pp. 206–215.

K. Shaukat, S. Luo, V. Varadharajan, I. A. Hameed, and M. Xu, A survey on machine learning techniques for cyber security in the last decade, IEEE Access, 8 (2020), pp. 222310–222354.

D. Ucci, L. Aniello, and R. Baldoni, Survey of machine learning techniques for malware analysis, Computers & Security, 81 (2019), pp. 123–147.

Y. Xin, L. Kong, Z. Liu, Y. Chen, Y. Li, H. Zhu, M. Gao, H. Hou, and C. Wang, Machine learning and deep learning methods for cybersecurity, IEEE Access, 6 (2018), pp. 35365–35381.