Software Engineering

Explainability in Cybersecurity Data Science


The Carnegie Mellon University Software Engineering Institute, AI Engineering: A National Initiative. https://www.sei.cmu.edu/our-work/projects/display.cfm?customel_datapageid_4050=311883. Accessed: 2023-08-29.

A. Alshamrani, S. Myneni, A. Chowdhary, and D. Huang, A survey on advanced persistent threats: Techniques, solutions, challenges, and research opportunities, IEEE Communications Surveys & Tutorials, 21 (2019), pp. 1851–1877.

H. Barmer, R. Dzombak, M. Gaston, J. Palat, F. Redner, C. Smith, and T. Smith, Human-Centered AI. https://resources.sei.cmu.edu/asset_files/WhitePaper/2021_019_001_735364.pdf. Accessed: 2023-08-29.

D. Bertsimas and J. Dunn, Optimal classification trees, Machine Learning, 106 (2017), pp. 1039–1082.

A. L. Buczak and E. Guven, A survey of data mining and machine learning methods for cyber security intrusion detection, IEEE Communications Surveys & Tutorials, 18 (2015), pp. 1153–1176.

D. Dasgupta, Z. Akhtar, and S. Sen, Machine learning in cybersecurity: a comprehensive survey, The Journal of Defense Modeling and Simulation, 19 (2022), pp. 57–106.

European Parliament and Council of the European Union, Regulation (EU) 2016/679 of the European Parliament and of the Council.

D. Gibert, C. Mateu, and J. Planes, The rise of machine learning for detection and classification of malware: Research developments, trends and challenges, Journal of Network and Computer Applications, 153 (2020), p. 102526.

B. Goodman and S. Flaxman, EU regulations on algorithmic decision-making and a “right to explanation”, in ICML Workshop on Human Interpretability in Machine Learning (WHI 2016), New York, NY. http://arxiv.org/abs/1606.08813v1, 2016.

Z. Hao, S. Liu, Y. Zhang, C. Ying, Y. Feng, H. Su, and J. Zhu, Physics-informed machine learning: A survey on problems, methods and applications, arXiv preprint, arXiv:2211.08064, (2022).

K. Highnam, K. Arulkumaran, Z. Hanif, and N. R. Jennings, BETH dataset: Real cybersecurity data for anomaly detection research, Training, 763 (2021), p. 8.

G. E. Karniadakis, I. G. Kevrekidis, L. Lu, P. Perdikaris, S. Wang, and L. Yang, Physics-informed machine learning, Nature Reviews Physics, 3 (2021), pp. 422–440.

C. Rudin, Stop explaining black box machine learning models for high stakes decisions and use interpretable models instead, Nature Machine Intelligence, 1 (2019), pp. 206–215.

K. Shaukat, S. Luo, V. Varadharajan, I. A. Hameed, and M. Xu, A survey on machine learning techniques for cyber security in the last decade, IEEE Access, 8 (2020), pp. 222310–222354.

D. Ucci, L. Aniello, and R. Baldoni, Survey of machine learning techniques for malware analysis, Computers & Security, 81 (2019), pp. 123–147.

Y. Xin, L. Kong, Z. Liu, Y. Chen, Y. Li, H. Zhu, M. Gao, H. Hou, and C. Wang, Machine learning and deep learning methods for cybersecurity, IEEE Access, 6 (2018), pp. 35365–35381.